ASYMPTOTIC OF THE DISPLACEMENT FIELD IN
CONTINUOUSLY INHOMOGENEOUS ELASTIC MEDIA
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Exact and approximate equations of motion of an elastic continuously inhomogeneous medium are obtained
in this paper in the form of coupled wave equations and the displacement asymptotic in a weakly inhomogeneous
elastic half-space subjected to tangential and normal loads dependent harmonically on time. The influence of
the inhomogeneity of the medium on the displacement asymptotic, the group velocity, and the Rayleigh wave-
length, as well as the intensity of the wave interaction energy are expressed in terms of the coefficients con-
necting the wave equation.

1. Linear wave interaction in inhomogeneous media can be described in many cases [1] by a coupled sys-
tem of wave equations of the type

(V?— vy ;’_) Oy — 2Dy =0, n=1,2, (L.1)

tz
where Z, are known functions, the desired functions &, can have different meanings, and the other notation is

standard. It is interesting to obtain an equation of the type (1.1) for an elastic medium whose Lamé parameters
A, p and density p depend on one coordinate. The vector equation of motion of such a medium has the form

yiey-u) — yxX{pyxu) + 2p'w —iy-u 4 i;xyxua) = p;;, g = A+ 2u. 1.2)

Here u is the displacement vector; the prime denotes the derivative with respect to the Cartesian coor-
dinate z and the dot with respect to the time; i, is the unit vector, and V is the nabla operator in the Cartesian
coordinate system.

Applying the Fourier transformation in the variables x and y to (1.2), we obtain a system of ordinary,
sixth-order, differential equations with fundamental and perturbing matrices. The fundamental matrix does
not contain derivatives of the medium parameters. The efficiency of matrix integration algorithms for such
systems [2] depends substantially on the possibility of finding the eigenvalues of the fundamental matrix in ex-
plicit and compact form. In this case the eigenvalues are found after solving a cubic equation and are suffi-
ciently awlkward; consequently, the matrix integration algorithms are of low efficiency. The method of sus-
pended potentials permits a system of equations without the mentioned disadvantage to be obtained. Since the
method mentioned has substantially been touched upon in certain conferences [3, 4] in discussions of similar
questions, it is elucidated quite briefly below in an amount necessary for the boundary-value problem under
consideration. Let us represent the displacement vector u in the form

u= f;lv (flq)l) "IL f;lv X V X (izf2¢)2) + V X ((D:;iz), (1'3)

where fy are still unknown functions of the variable z. Let us substitute (1.3) into (1.2) and append two iden-
tities containing functions hy, to the result of the substitution:

V (b, @) — i, (h1V2 R %)qal —(V XV X iy — BV, ®y =0,
V (1,VI0,) — (10VE = V X V X hal, 2) @, = V, (1,V2D, + D)) =0,
2 4 . 0 .
Vi=VV, Vi==1i+ bRl

After certain manipulations, we obtain the vector equation
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VA;} - VXY X izi’\gg -+ v Xizix.«;g — V:.’Xn — izl\q:, =0 (1'4)

{Apm are differential expressions dependent on ¢,) which will be satisfied if the potentials &, are found from
the system of scalar equations

Ay + Alz-z — A =0, A;l - Vtzf\zz — A =0,

- (1.5)
Ay =p V20, + p' @y — pb,; = 0.

We select the values of the functions hy, g, = fhi;! such that the expressions for Ay, are as simple as possible.
If we take hy =hy, =—2u', g, =g, =p'p~*, then

A = An [D(Dn -+ Qn [(2 — n) V? +1-— n] (Da-—n} (n=1, 2)7
o d ' —2 2
Dn:v'ﬂl‘Ppg;‘{“Pp— n z’Xl =& =W
Ay = Z2,Vi®,y, Ay = 2,Dy, Zy = 20"pp — 207,
Qn = Pp — 2Py 7?07, py = P74, pp = ppTh 7P = en
The third equation in the system (1.5) is separated from the first two, each of which is of third order.
The system of ordinary differential equations corresponding to (1.5) is integrated effectively since the char-
acteristic polynomial of its fundamental matrix dissociates into binomial quadratic factors. For a weakly in-

homogeneous medium the first approximation equations, i.e., (1.5), can be used, wherein the terms Ay Ayg are
discarded as being of second order of-smallness. We then obtain a system of approximate equations

Vz(Dl + (ppcD1)’ — 7)1_2&)1 + Q1V%®2 =0,
V2D, + (pp®@,) — 07D, — Q, D, =
V2D, + p,@; — v7°D, = 0,

{1.6)

2. We use (1.6) below to find the asymptotic of the displacement field in an elastic weakly inhomogeneous
half-space if the boundary conditions

Op = Pulz, y) et , n=1,232 y=Q, 2.1)
1)
Oy == 0z, Oy = Oyz, O3 = Oyzs

are given in the plane z =0, where Q is a bounded domain of load application, ¢, are siress tensor components,
w is the vibration frequency. The factor el@t js henceforth omitted. The solution of the system (1.6}, bounded
as z — w, is written in Fourier transform space in the variables x, y in a first approximation, i.e., with the
components containing the first derivatives with respect to z of the medium parameters conserved. The fol-
lowing operations are here satisfied. After the Fourier transformation, the first two equations of (1.6) (the
third is integrated independently) are written in the form of a system of four first-order equations whose eigen-
values of the fundamental matrix equal == (o 4 f* — A2)1/%, &, = ov;?, where «, § are Fourier transform parameters.
The system is later subjected to matrix transformation, after which the fundamental matrix becomes quasi-
diagonal since it is assumed that its eigenvalues have one point of rotation. Then the second transforming ma-
trix,which assures splitting of the system into two independent pairs of equations [5], is constructed in a first
approximation. Finally, the method of standard systems is applied to each pair and to the Fourier transform of
the third equation from (1.6), whereupon
@ = WC, @ = (@, ], D, D}, D,, D;,
0 0 It

)W Wy W, dW, 1/5; o o

(2.2)

W= aw, d Wz W, W; e e '
o0 0 V o iwwm|
3/2 ; 0
w(k
Wn - (l/q):) ) = (-g— JI my (Z) dz) y Pp =9 (0)7
5 —2 1/2 n_ %n
my = (8 + 8 — i @) do= (= )" w0 07" 0),
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C=(cp e ¢)', E=ak™, & =Bk, k = wv;* (0).

Here w is the Airy function bounded as z — «, W, is the Airy—Fok function, and the superscript t indicates
the transposition operation. The constants cp are found from the Fourier transformed boundary conditions (2.1)

I.lPWC = 0, 0= (011 Ta, GS)t.’

where

2iog 2 ioax* 0 O if
2iBg 2ip 1iPx2 O O daj

P = 3
®? 0 29 2n* 0 O

Nt = a? + B% u® = 202 — k3; ¢ = po + Qs

The Fourier transforms in (2.2) are denoted exactly as are the originals. We determine the arbitrary constants
for two cases. In the boundary conditions (2.1) let the normal stress differ from zero. Then

u= ()" | | SWeeiostpido dfy (2.3)
i 0 iopy, i if O
ip 0 iPp, ip —ia O
pp 1 7w O 0 o
ey =Py (& B) L (neA) ™%, € = — P, B) K (16A) 7",
K = 2W; -+ W, (29 + %*dy), L = w*W, -+ 2d,*W,,
A=W, W, — AW W, - 2t (W2W; - W1W;) (d, —d;) —
— Aqup (W, Wy 4+ W,W), 1% =82+ 8% g = (0).

S =

£

If only the tangential stresses differ from zero, then we find the displacement by means of the same depen-
dences (2.3) but for other values of the constants c, which are now determined as

e = Bn (,A)1 (n=1,2), cg=m, (W;)_la
=y (o B) o+ (2, B) B) (0 + B9)7L, By = 20PWy - (200 + ) W,
Ey = %W, -+ 2712de1,
fy = —i(Ya(ar, PP — Psla, Pl
In the simplest case of constant stresses oy within a domain in the shape of a rectangle |x| =< a,| y| =b,

the factors are y, =0, sinaa)sin (Bb)@p)~'. We analyze the displacement field (2.3) in the same domain of
variables where the Airy—Fok functions allow the asymptotic representation

. z
W, = m"? exp(—k‘s mndz), n=1,2
Zn -

(zp is the point of rotation). After the substitution mentioned, we calculate the principal term of the asymptotic
of the integral obtained in a remote point of the field. To do this it is necessary to evaluate the contribution of
three kinds of points: saddle, bifurcation, and the poles of the integrand. But since the contribution of the bi-
furcation points is an order below the contribution of the saddle points [6], it is not considered here. We ap-
proximate saddle points by considering the medium to be slightly inhomogeneous. In the phase function

— k[ ma(a)dz i (e +BY)
) °

we calculate the integral by the method of freezing and we go over to variables R, 9, ¢ of a spherical coor-
dinate system. Then we obtain for the saddle points

o= —4gnsinBcosg, &, = —g,sinfsing, ¢, =:z;2 0) vt (2).
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We note the contribution of the saddle points to the displacement field by the subscript 8. After the calculations
specified by the two-dimensional stationary phase method, we express the displacement of an elastic medium in
a spherical coordinate system by means of the formulas

ug . ‘sin 6) cos 6
(”-e) = (10059 + Uy sin ) (cos 8 + U (sin B) ’
Up = —Uy 8in @ -+ uy cos @.
We then obtain for the displacements
2
Ups = 2 GyKpy, Uje=lp,, Up= Ugsy g =10, {2.4)

Y=1
g, c0s 0

G, = S 6XP (-— ikRyv-2 4- -Z—L) (

m‘V (0)‘ 1/2 1p1 (C‘vv gv)
@) ) Flon &) "

K}.l = k3(p1'ﬂ19 —_ 261)’ By = kqni — P, CoS e,
Koz = kg, sin® 820540 — ¢2T3), T = 2q(0) -+ Ko dos
Kle) - k3v2 sin® | — 2023.3!]2
Ky -1 %240,
B0 = 20,0, ()sin0, 0, = (200 — g i),
F@, &) = K l(x* — de?mymy)k -+ 2(dy — d )23 (ms — my) + 47%(m, + my)l,

), xf,e = 2¢% sin20 — 1,

where ¥ (¢, £,) is the Fourier transform of the function y, evaluated at the saddle point. Under the action
of a tangential load we should take in place of  , Kpi the 7, Lyy and the displacement u,, will be nonzero:

(Lu) _ ¥ siney? (42“2902)
Ly, 71 070, '

Ly = /f3q1 sin? 0@2pyay + ¢4 Ty),
Ly = ik®q; sin O (1on2e -+ 26,),

X
uy = 1 sin 0g3m, (Cyy &) S 15 0 my e

Let us make a number of deductions. In a homogeneous medium the displacements ug and ug are prop-
agated far from the source as longitudinal and transverse waves, respectively. In this case the longitudinal
wave in the displacement up is accompanied by a transverse wave that vanishes in the case of a homogeneous
medium. Consequently, the fundamental wave is longitudinal while the transverse can be called induced. The
fundamental wave is transverse in the displacement u, and the longitudinal is induced. The amplitudes of the
induced waves are proportional to the coupling coelficients of the wave equations Q4. As is known [6], the prin-
cipal term of the displacement asymptotic uy is real for a homogeneous medium while it can be both real and
complex in the displacement ug. Inhomogeneity of the medium makes both the expressions mentioned complex;
in particular, the Rayleigh function is complex at both saddle points. For instance, we have at the saddle point

TR
F=k(Fyk+iFy,), Fiyu=xjp+ 4739, 8in?0,
Fiy= 2¢} sin@ [%ie (dy — dy) (3, — ;) + 29 (3, +- 31)].

This means that the maximal radial and circumferential displacements are achieved at different points of the
wave surface at different times; the difference in the time depends not only on the mutual arrangement of the
two points but also on the nature of the wave propagation. Thus, for waveguide propagation, when vy Brows, 5
remains a real quantity. If v, decreases, then »; becomes imaginary for ¢, sin ¢ > ~! and the form of the
function F changes.

Inhomogeneity of the medium results in energy redistribution of the vibrations between the longitudinal,
transverse, and surface waves. Part of the energy goes into the formation of induced waves. ILet us derive the
formula for the interaction energy intensity for the fundamental and induced waves. As is known the energy
emission intensity is defined as the mean emission energy per period per unit area and is found from the for-
mula . _ _

— —lz—) (Griug — Oplip - Opolte — ORoile)s
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where the bar denotes the complex-conjugate quantity and it is assumed that up = 0. If the displacement is
written in the form

up = (4, + iBl)F—l( L &) VleF"l( Loy Bo) = up -+ uge (2.5)
ug = (A - iBa)F '1( L E) + V.O,F- l(tn E1) == up, -+ ug

(the second components on the right correspond to the induced waves), then it can be shown that in a remote
point of the field

Op = WYy ug -+ ugpk + O(R-?),
Og = Ri(y~ug, + ug)k + O(R?).

Here O(R™) indicates the order of magnitude of the discarded components. Then we have for the energy inten-
sity in a first approximation

k %H (2yuritir + 2upsttes + (1 -+ y77) [(uritns + Uritns) ¥* -+ tottes -+ workosl)-

The second component in the formula obtained yields the energy intensity of interaction between the fundamen-
tal and induced waves. Let us write it in greater detail, for which we introduce two plane vectors N = Fp, +iFp,
whose components equal the real and imaginary parts of the Rayleigh function evaluated at the saddle points.
Then the component mentioned takes the form

onvnyz(ﬂ-m( LN, (= )4, | N XN ;)
IN WA

Bgn (4 Y

n—l

where Ay, By, V|, are found by comparing (2.4) and (2.5).

To estimate the displacements caused by the Rayleigh wave in a remote point of the field we find the root
of the function F(z, £) corresponding to the surface wave. If the value bj of the root for a homogeneous me-~
dium is taken as the zeroth approximation, then we obtain by the Newton method for the first approximation

by=b(1 —M), M=MM;",
J"l1 = 2(70_2 (2 - bg) (dz - d1) (320 — 31) + 49 (336 + 33p)»
My =Tk 410, TI; = 4by (30032 +- oy03 — 2+ BY),
I, = M,—20d,—4d) [2 (3an — B} + (2 - b?}) (?—23571 — 92_bl)] -
~ 4qb% (952 + 93, By = (1 — blp2(n-2)V2,

We hence find the velocity increment Avy and the length increment AlR of the Rayleigh wave caused by in-
homogeneity of the medium

Avp = vp — vpy = beMvs(0), Aly = 2n0~ by Mvy(0)

(the subsecript 0 indicates, the value of the quantity for a homogeneous medium). We find the group velocity VRg
of the Rayleigh wave by differentiating the dependence w = kpvp with respect {o kr, the Rayleigh wave number:

Vpg = d‘ﬁf = vp (1 — M) (1 — MEZMFY™,

As should have been expected, as the frequency of vibrations grows, the influence of the inhomogeneity
decreases and the group velocity tends to the phase velocity in the limit. To estimate the displacement field
caused by the Rayleigh wave at a remote point of the field, we evaluate the mner integral in (2.3) by the theorem
on residues, and the outer by the stationary phase method. Here ; = ¢ = = £9Y2, cg = vyvg! in the Ray-
leigh root, and the stationary value of { is found at the point {ép = cR sin o, cp =tan~ 1(yx 1), As an illustration
we present the asymptotic of the axial displacement u,p at the point z =0 under the action of a normal stress

u,r=Gp [m1Rk -+ Zpuc‘fz — Pp]a r= (1’2 + Y2,
25cp
Ga = 2y (Cns 2 (

T =05 t=ln mn=(h—vi O OM"

1/2
) exp (iorvg! — iot) T (cr),
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In the case of a constant stress o, applied to the boundary of a rectangular area
Py (Ca» Er) = Kz’ sin™" @ cos™ @ sin (kga cos @) sin (kgb sin ¢) 0.

Hence it follows that if the size of the area is selected according to the dependences @ = nmvg /w cos ¢ or
b =nwvg /w sin ¢, then there will be no displacements. Therefore, the influence of the inhomogeneity of the
medium on the size of the area for which the maximal or minimal part of the energy of the vibrations source
is transmitted to excitation of a Rayleigh wave in a given direction can be estimated.
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ANTIPLANAR DEFORMATION OF AN ELASTOPLASTIC
STRIP WITH A SEMI-INFINITE CRACK

V. G. Novikov UDC 539.374

The features and details of plastic flow at a crack tip govern its development [1]. Therefore, it is im-
portant to have a correct idea about the shape and dimensions of the plastic zone, and about the intensity of
deformation in it. In view of this there is considerable importance in the problem during whose solution, apart
from determining stresses and strains, there should be determination without prior assumptions of the boundary
separating the elastic and plastic regions. A study was made in [2-8] of approximate and numerical methods
for this problem, and analytical solutions in closed form have only been obtained for antiplanar deformation of
a boundless material with one rectilinear crack or a periodic system of collinear defects |9-14]. In thiswork an
accurate solution is obtained for the elastoplastic problem of antiplanar deformation of a strip with a semi-infinite
crack.

We consider antiplanar deformation of a strip made of elastoplastic material occupying the region |[x]< c,
ly] = d. It is assumed that in the plastic condition material behavior is described by the Tresk condition

O':iz ‘f‘ 051 = Ti (1)

and by an associated rule for plastic flow, and in the elastic region by Hooke's linear rule

ow dw
Owe =My O =My (2)
2 2 2
0;2 + 0yz< Tger (3)
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